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* Click"Join Audio” and check the volume
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(if using a mobile phone) and make sure it is on
e Check connection to speaker
(if using a desktop/laptop)
Try logging off and on
* Send a message to us in the chat box
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_.,,.." Drones and Digital IPM Series

. ..-.‘.'::— - Drones and Integrated Pest Management (IPM) hold huge
;a

potential to farmers across Southeast Asia better monitor and
manage plant health and control plant pests and diseases.

3 Webinars with 5 Expert Speakers

Webinar 1: Tuesday 19th November from 16:00 to 17:30

3 4l (Singapore time/GMT+8)

: b Latest developments in drone research and standards development in

crop protection in Indonesia & Thailand
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o wiiaz  (Singapore time/GMT+8)

Drones for Climate-Resilient Rice Production in the Mekong Delta
« Dr Nguyen The Cuong, CLRRI ,Vietnam.

; ¢ Webinar 3: Thursday Sth December from 10:00 to 11:00

(Singapore time/GMT+8)
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Intelligence + Natural

« Professor Yong-Lak Park, West Virginia University, USA.
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A recording of the webinar will be made and be distributed

See www.aseanfawaction.org/drones-and-digital-ipm

View Options

ASEAN FAW ACTION PLAN

1. Use the Q&A box to ask
qguestions to the speakers

2. Use Chat to make a comment
' to everyone (e.g. thanka
speaker, share a link, highlight
an important point)

Drones and Digital IPM

_______________________________________________

3. Use Reactions if you want

to share a reaction quickly —

thumbs up, congratulations,
etc.

Webinar Series
Part 1: 4 June 2024

_______________________________________________
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10:00 Welcome & Remarks ASEAN Action Plan —
Dr Alison Watson

10:10 Drones for Climate- Dr Nguyen The Cuong | 11:30
Resilient Rice Production Mekong Delta Rice
in the Mekong Delta Research Institute
(CLRRI), Vietham

10:30 Q & A Session

10:45 Swarm Technology and Dr Richard Han |
Autonomous Drone Macquarie University,
Innovation Australia.

Q & A Session

Closing

End

Time
(SGT) Agenda Speaker

ASEAN Action Plan —
Dr Alison Watson
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1. Who has operated a drone in
the field for agricultural
purposes?

2. How important will drones be
in agricultural crop protection and
crop health in the future?

3. Do we need more research on
drones and agriculture?

4. Do we need more standards
around drone use for agricultural
practices in the field?

Have you ever operated a droneinthe
field foragricultural purposes?

H No
M Yes

B No, but | have for other
purposes (e.g. tourism)

Howimportantwilldrones be in
agriculturalcrop protectionand crop
health in the future?

B Not important
¥ No so important
B |mportant

M Very important

Do we need moreresearchon drones
and agriculture?

H Yes
H No

M | am not sure

Do we need more standards around
drone use foragriculturalpracticesin
thefield?
M Yes, but not so urgent
M Yes, urgently (within the next
18 months)

HNo

M Not sure

ASEAN FAW ACTION PLAN



Poll

1. Who has operated a drone in the field for agricultural purposes?

2. How important do you think proper training is for people to fly drones for agricultural
purposes?

3. Should agricultural drone pilots be registered?

4. Should pesticide application by drones be regulated? (e.g. rules around who can apply
pesticides by drones, standards that must be applied and safety rules that have to be followed)

ASEAN FAW ACTION PLAN



Session 2: Thursday 28h November from 10:00 to 11:30

Drones for Climate-Resilient Rice Production
In the Mekong Delta

Our Speaker:

Dr Nguyen The Cuong | Mekong Delta Rice
Research Institute (CLRRI), Vietnam

Swarm Technology and Autonomous Drone
Innovation

Our speaker

Dr Richard Han | Macquarie University,
Australia.

This Photo by Unknown Authoris licensed under CC BY-SA-NC



https://www.flickr.com/photos/ciat/26936673075
https://creativecommons.org/licenses/by-nc-sa/3.0/
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Drones and IPM Webinar Series 2024

Drones for Climate-Resilient Rice Production
in the Mekong Delta

Nguyen The Cuong
Cuu Long Delta Rice Research Institute
Can Tho City, Vietham

28 November 2024



Content

. The Mekong Delta - Rice Bowl of Vietnam
2. Challenges in Rice Production in Mekong Delta

3. Drones in Rice Production

4. Drones Application in the Mekong Delta Context
9. Challenges in Drone Implementation

b. Addressing Drone Implementation Challenges
in the Mekong Delta

https://phuongtindrone.vn/



The Mekong Delta - The Rice Bowl of Vietnam
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700.000 ha

Triple rice/year area:
23.8 million tons

Total production:
56% of VN rice production

90% of total export volume

6.1 ton/ha
Diverse environments

Average yield:

Rice ecosystem:

Source: Ministry of Planning and Investment, 2020
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Climate change impacts
Soil and water degradation
High GHG emission

Pest and disease outbreaks
Inefficient resource use
Market volatility

Labor shortages

High input costs

.....

m Rice = Livestock = Other

Methane emission in Agriculture (Source: MONRE. 2020)
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Drone Application in Rice Production

Direct Field Operations
0 Seeding
Q Fertilizer application

O Pesticide spraying

Monitoring and Analysis
0 Crop monitoring
O Water management
O Disease detection
O Yield estimation
O Field mapping
O Soil analysis

[ Assist GHG measurement

CLIMATE
ACTION
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Benefits of Drone in Rice Production
O Increasing efficiency
U Reducing labor dependency.
O Precision application
U Reducing water and chemical waste.

U Reduce health risk for workers

Align with Climate Goals
O Minimizing GHG emissions

O Promoting sustainable practices: Precision
agriculture, Enhancing soil health,
Monitoring and early detection; Reduce
health risk for workers

O Supporting climate-resilient practices: Data-
driven decisions, small holder inclusive



“. VN Drone Market & Application in the Mekong Delta Rice Production
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Vietnam aqgricultural drones market (AgriTechDigest, 2024)

- USD 4.84 million in 2021
- USD 18.11 million by 2028
- Annual Growth Rate 21.1%

- Estimated number of agri. drones 6,000 (rice, fruit trees, banana, coffees ...)

Trend of drone application in the Mekonqg Delta rice sector

2018 2023 Now -> Future
Plant protection Plant protection - Direct application
Foliar fertilizing Seeding - Crop, soil and water monitoring & analysis
Fertilizing - GHG monitoring & analysis

- Assist development of new varieties (phenotyping)




Drone Application - Fertilization (NPK-granule)
- Golden snail - Foliar fertilizers (liquid)
Land Cro R Plant :
, , P Fertilization . Harvesting
preparation ~ establishment protection
- Seeding - Pesticides
- Pre-emergent herbicide - Fungicides

- Post-emergent herbicide

Advantages of Drones in Rice Production in the MD Context:

Effectively address labor shortages, particularly during peak periods
Suitability for challenge areas: muddy and water logged areas in MD, which is difficult for large machines

Enable uniform, concentrated and synchronized sowing across large areas quickly to avoid bad weather, improve
water management, optimize input use, enhance pest control, and ultimately improve rice quality for whole sale
or export.

Reduce rice yield loss by 150 - 200 kg/ha compared to conventional spraying methods, as drones eliminate the
need for trampling rice plants while walking through the fields.




Drone for Direct Application in Rice Production in the MD

CROP ESTABLISHMENT METHODS (N=4,512)

Drone
3%

Drum seeder
1%

Manual

broadcasting
25%

An. Hung. et al. (2024)

Mechanized
hill/row seeder

2%

Transplanting

\(mechanized/manual)
1%

Early 2024 - Survey

- Seeding: 3% area ™~ 117.000 ha
Estimation:
- Fertilizing: 3 x 3% area~ 351.000 ha

- Spraying: at least 5 x 3% area ~ 585.000 ha

- Old spraying drones: > 600.000 ha
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y Drone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

¥

Fertilizer rate 80 N — 40 P,O. — 30 K,O (kg/ha): First application (7-10 DAS): 40% N +

reatment

I

(DR-E)lNE) 60 kg/ha  50% P,0; + 50% K,O; Second application (22-25 DAS): 30% N + 50% P,O;; Third
application (42-45 DAS): 30% N + 50% K,O
T2 60 kg/ha Fertilizer rate 80 N — 40 P,O, — 30 K,O (kg/ha): First application (basal application): 70%
DRONE N + 100% P,O. + 50% K,O; Second application (42-45 DAS): 30% N + 50% K,O

Fertilizer rate 80 N — 40 P,O, — 30 K,O (kg/ha): First application (7-10 DAS): 40% N +
80 kg/ha  50% P,O, + 50% K,O; Second application (22-25 DAS): 30% N + 50% P,O; Third

application (42-45 DAS): 30% N + 50% K,O

Fertilizer rate 100 N — 90 P,O; — 50 K,O (kg/ha) (blower backpack machine): First

application (3-4 DAS): 10% N; Second application (10-12 DAS): 35% N + 40% P,O; Third

T3
(DRONE)

150 kgfha application (22-25 DAS): 45% N + 60% P,O;; Fourth application (42-45 DAS): 10% N +
100% K,O
60 kg/ha Application of cluster seeding machines combined with deep fertilizer incorporation.
Fertilizer rate 80 N — 40 P,O; — 30 K,O (kg/ha): First application: seeding time. 70% N +
Row 20cm x

100%P + 50% Kkali; Second application: 37- 42DAS 30% N + 50% K. blower backpack
machine. Fertilizer incorporate depth: ~5cm

cluster 13 cm

(CLRRI - Thach Tran et al. 2024)
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Drone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

Seeding by Cluster Seeding Machine
Incorporated with fertilizer deep placement

07 thang 6, 2024 08:52

(CLRRI - Thach Tran et al. 2024)
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}ig Draone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

T2 (Drone) e 0 0 0
60 kg/ha oy 1 A

Fertilizer St
..~ T3 (Drone)

deep i b R
placement | sy 18 80 kg/ha

T1 (Drone)
60 kg/ha

T5

60 kg/ha
Cluster seeding
Fertilizer deep

(CLRRI - Thach Tran et al. 2024) = placement &

T4 (Seed Blower)
150 kg/ha ¥




(CLRRI - Thach Tran et al. 2024)
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1 (Drone) T2 (Drone): T3 (Drone)

T5: 60 kg/ha
60 kg/ha 60 kg/ha 80 kg/ha 150 kg/ha Cluster seeding
Fertilizer deep (Seed Blower Fertilizer deep
placement Machine) placement

(CLRRI - Thach Tran et al. 2024)



Drone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

Table. Yield components and yield across treatments

No. of panicle No. filled Predicted yield Actual yield
/m? grains/panicle (t/ha) (t/ha)
371 84.6 7.53 5.64
379 86.5 7.85 5.89
407 81.0 7.56 5.67
365 775 7.09 5.32
420 74.1 7.46 5.99

(CLRRI - Thach Tran et al. 2024)



Drone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

Cor>

Table. Cost and benefit calculation across the treatments

|. Total cost (VN d/ha)

1. Input (VN d/ha)

- Rice seed

+ Seeding rate (kg/ha)

+ Seed cost (VN d/kg)

- Fertilizers

- Pesticides

2. Labor (VN d/ha)

I1. Total income

- Yield (kg/ha)

- Rice price (VN d/kg)

[11. Net income (VN dong)
V1. Investment efficiency

28.475.300
9.610.500
1.080.000

60

18.000
4.281.000
4.249.500
18.864.800
50.805.000
5.645
9.000
22.329.700
1.78

28.173.300
9.468.500
1.080.000

60

18.000
4.281.000
4.107.500
18.704.800
52.983.000
5.887
9.000
24.809.700
1.88

29.035.300
10.120.500
1.440.000
80

18.000
4.281.000
4.399.500
18.914.800
51.039.000
5.671
9.000
22.003.700
1.76

33.974.600
13.764.500
1.440.000
150

18.000
7.705.000
4.619.500
20.210.100
47.853.000
5.317
9.000
13.878.400
1.41

(CLRRI - Thach Tran et al. 2024)

28.081.321
9.520.582
1.080.000

60

18.000
4.281.000
4.159.582
18.560.739
50.319.000
5.591
9.000
22.237.679
1.79



Drone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

Drone Capacity and Service Costs by Activities

Drone Price (VN dong) Difference

Activities Esz/zc;;;)/ Srone Labor (VN dong)
Seeding ha 50 500,000 550,000 50,000 ~ 2USD/ha
Pesticide spraying ha 50 150,000 270,000 120,000 ~4.8USD/ha
Fertilizing kg 60 2,000 2,500 500 ~ 0.02USD/kg

(CLRRI - Thach Tran et al. 2024)



. Drone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

Costs of Seeding, Fertilizing, and Spraying Services

Unit

Activities Price Cost Price Cost Different
-Seedlng dong/ha  500.000 500.000 550.000 550.000 -50.000
rayin
2 Spraying dong/ha  150.000 1.050.000 270.000 1.890.000 -840.000
(7 times/season)
Fertilizing
dong/k 2.000 1.000.000 2.500 1.250.000 -250.000
(500 kg/ season) I

-1.140.000 ~ 46USD
(-30.1%)

Total save by Drone (per ha):

(CLRRI - Thach Tran et al. 2024)



Challenges in Implementation of Drones in Rice Production

1 Economic constraints: High costs for purchase, maintenance, and lack of financing options.

 Technical challenges: Complex operation and repair, limited battery life, and weather

dependence.
 Regulatory barriers: Unclear policies and lack of standardization for agricultural drones.

O Social resistance: Hesitation to adopt new technologies and limited awareness among
farmers.
O Environmental issues: Flooded fields, small fragmented farms, and disposal of drone

components (e.g. battery).
O Data limitations: Lack of expertise for data analysis and poor internet connectivity in rural

areas.
O Sustainability concerns: Dependence on imported technology and lack of local expertise
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% Addressing Drone Implementation Challenges in the Mekong Delta
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Capacity building: Train farmers and technicians in drone
use and maintenance, especially safety.

Financial support: Provide subsidies, loans, and
cooperative cost-sharing models.

Regulatory support: Develop clear policies (regulation,
insurance etc.) and operational guidelines for drones.

Localized solutions: Design drones tailored to Delta’s
environmental conditions.

Infrastructure development: Establish local repair
centers and improve connectivity.

Awareness campaigns: Educate farmers on benefits and
ease of drone adoption.

Public-Private Partnerships: Collaborate with tech
companies and NGOs for scaling.

I SOCIETY ~ ciassical  weather  Vietham  sport  Miss International Queen

Drone entangled in power transmission line
causes massive blackout in southern Vietham

Tuesday, October 15, 2024, 15:36 GMT+7
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A drone crashed into a 110kV power transmission line in Long An Province, southern Vietnam, causing a power
blackout for 76,000 households and units in the province. Photo: Long An Power Company

A drone that a local resident used to spray pesticides | Highlights
crashed into a 110kV power transmission line in Long
( § ) AnProvince, located in southern Vietnam, causinga | A i
power blackout for 76,000 households and units in o o Th.'Ch
L B 2 Minh Tue says will halt
gy five districts across the province on Sunday. alms-receiving activities

) (€ )

In Vietnam, Buddhist
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Projects in Autonomous Drone Systems

Professor Richard (Rick) Han
Macquarie University, School of Computing
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Macquarie University School of Computing

D THE (T|mes ngher THE: Macquarie Cz-:;;:puiing .
Education) World °
University

Rankings, - /
Computer Science

300
= | HE: Macquarie Computing

U many hires, strong in Al/ML, Data Science, NLP, security, & mobile
computing

1 Tao Gu Mobicom chair 2022, Sydney, IEEE Fellow
1 Mobile Computing CS rankings.org #48 world/#1 Australia
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SYDNEY -AUSTRALIA

Introduction to MQ Drone Lab

Professors Richard Han, Endrowedness Kuantama, Subhas Mukhopadhyay (IEEE Fellow)

www.madronelab.com



http://www.mqdronelab.com/

MQ Drone Lab Facilities B oo

iversity
www.madronelab.com '

SYDNEY-AUSTRALIA

DRONE INDUSTRY WORKSHOP


http://www.mqdronelab.com/

MACQUARIE
University

Macquarie Drone Lab
Research Projects

mqdronelab.com

Performance >

L)

UAV State

Perception

{""Sensor i
i...Data_ . : ~

Maker Detection

TPH-YOLO

.................................

Obstacle Detection

................................

Obstacle

Identification :

Decision

Takeoff

Search

Path Planning

Control

Ego-Planner

Ardupilot

Land

a




Collaborative Drone Swarm Lift & Transport & Jnre
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Limitations of Lift Mechanisms

DRONE CHALLENGE:
. LIMITED DRONE PAYLOAD
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Challenges of Drone Lift

PROBLEM - CENTRE OF GRAVITY & AIRFLOW

BALANCE LIFT

N o« Some motors
Y _experience loads
than others.

5

Center of Mass * Geometric Centroid




Drone Swarm Lift Design & [

Pull-based Lift

YYYYYY -AUSTRALIA

Our approach: Push-based Lift

e 3-DoF Gimbal
Challenges:

/

«* Pendulum, airflow, and wind effects

/

¢ Hierarchical control strategy

/

* Manipulation for payload parameter

/

s Load distribution based on trajectory planning

D W



DRONE SWARM LIFT SYSTEM

| 3-DEE
| Balancer

' NVIDIA JETSON

Flight Controller !

" MACQUARIE
8 University

IEEE International Conference on Advanced Robotics and Mechatronics 2024



SWARM LIFT ARCHITECTURE AND METHOD

BLOCK DIAGRAM LOAD SENSING PARAMETER

MAVLink . : .
Input Output e NVIDIA Jetson Nano Drone Movement 4 % 7 = Al o T .
GPS ESC [MAVROS] 0 5
Digital Compass |™® = | Motors L gl °
Gyroscope Telemetry h N B1 . . B3
.Ccelerometer ; LED 2 i Oi Received coordinates from Arduino 1 (X, y)
Lidar Flight Buzzer , EH ol = (649.561)
Remote Control Controller B : = -
Serial ‘ :
Target Position Communication Received coordinates from Arduino 2 (x, y)
Leader Drone position 3-DoF Servo (202,535)
; : o - D1
Wireless
communication ‘
i |
SBT ‘ 1350 mm l
7z ‘
\I'» | SBT — SERVO ANGLE

Roll (-9) : /Sideview Sl O - 300

Resistive 1y
Plat \ /

=t S2 0 - 40°
vdw<+:/v>ﬂ, \\ - S3 O _ 3 O o

Top view

MACQUARIE
University

Pitch (-¢) Side view
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Drone Swarm Lift Demonstration

« Patented

* Next-gen:
autonomous
& more
drones
[under
submission]
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“ Q\E. -
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AeroBridge: Autonomous Drone Handoff System
for Emergency Battery Services

[ MobiCom 2024]

Avishkar Seth*, Alice James, Endrowednes Kuantama,
Subhas Mukhopadhyay, Richard Han

Macquarie University Drone Lab
Faculty of Science and Engineering

Sydney, Australia
Q Dr@NE Lab. "

MACQUARIE
University

SYDNEY:-AUSTRALIA

©
Association for
Computing Machinery MObICOm 2024
Nov. 18-22, 2024, Washington, D.C., USA




Critical Applications of Drones

2. Emergency Medical Delivery 3. Marine Monitoring

4. Powerline Maintenance 5. Bushfire Control 6. Agriculture Drones



Problem: Limited Battery Life for Continuous Flights

Example LiPo battery solutions

Excess weight ~45-60 mins average flight time
A B C In Flight (GPS) M ers & i
05:07
Ll il Qi) S Low Battery Threshold
Capacity 22,000mAh 20,000mAh 22,000mAh 2 : Default RTL enabled
C Rating 25C 65C 25C
é) Aircraft will return to Home Point in 9 seconds
Flight time 32 mins 29 mins 33 mins . .
Low Battery. Aircraft will Return to Home at

the end of the countdown. Confirm or cancel.

Flight Time (min) vs. Total Mass (g) "
System Constraints

s | 1. Heavy battery systems
e |, 2. Battery power must be conserved for
RTL, further reducing flight time

3. Disruption of service (tracking/delivery)
Total Mass (g) \ J

Flight Time (min)

Limited Battery Capacity with increasing weight

1. https://www.tytorobotics.com/blogs/articles/a-guide-to-lithium-polymer-batteries-for-drones



http://www.tytorobotics.com/blogs/articles/a-guide-to-lithium-polymer-batteries-for-drones

Current Solutions

Bulkier Batteries Ground-based battery
swap

Replace the operating drone with a Bulky on-board replacement
new drone system

16



AeroBridge: Towards Mid-Air Battery Swap

Emergency Battery Services (EBS) Mid-Air Refuelling
e AN S YR T

Service Drone

TWO-WAY
BATTERY SWAP

Swarm Drone-2

Replacement
Batteries

Relay - Baton Handoff

Low
Battery 4

System Advantages

1. Extend Flight time almost indefinitely
2. Drone can remain at service location, uninterrupted
3. No additional weights due to the swapping
4. We can build Emergency Battery Services (EBS)




AeroBridge: Design Goals

Design Goals

1. Accurate ’ <1 & .' LiPo Battery
2. Smooth and Quick Transfer \

3. Light-Weight

\S! Slider 2
4. Robust : | '
case ‘

S 5. Low cost ) ~ <
g ! oA-. ‘/_ J . q,"‘

Battery

3 ! w ___——-_ﬁ
| Receiver Drone &=

The battery transfer mechanism
- EBS and Receiver Drones



Contributions

Proximity Flight

otors
etn

NVIDIA Jetson Nano —

MAVLink
onROS

{MavROs)| Digital Compass

qm— | Gyroscope

11, idar
L | .

eria

Depth Camera D455 1

Design a mechatronic mid-air
docking system for item transfer.

The drone position model based on airflow position (a) X4 = 0
cm (b) Xg =16 cm (c) Xy = 32 cm.

« Use Quadcopters for
analysing Proximity Flight

e Use a novel visual inertial

approach that uses a ArUco
marker design configured

with pose information.
- P /

« Analyse the precise position
\_and distance -

Contributions: 0.5 m proximity transfer, mid-air docking system, visual inertial approach for improving positioning
Currently no such system exists!




Downwash Turbulence Tests

Downwash Proximity 100% \

Due to the downwash turbulence, the receiver drone below
is destabilized and can drift across the x or y axes. The
horizontal displacement is ~2.4m. ‘

Example of airflow

_100% Drone Overlop disturbance below the
- drone’s propellers

: :

= Airflow Analysis

CFD

=

* & The CFD simulation

outcome portrays harsh
MACQUARIE R, . , airflow interactions
University rONELab. - 770

- 15 gt F = =" F ‘ between two propellers

' - — — ¢ 0 s w1520 2 % 35w % |aligned perpendicularly.

i The airflow between two propellers \- J

with X4 = 0 em

Downwash Test with Indoor Positioning



Drone Proximity Alignment — Partial Overlap

Downwash Proximity 50%
Diagonal placement, corresponding to 50 percent overlap
between the drones further reduces downwash impact.

I © 07 Drone Alignment

@ o
, : @ ' -
ﬁ {ﬁﬁ&%ﬂ{?ms MQ DrONE Lab.
: ]__ ALIA » o
Heden

S total, 0 failed (0%)

Downwash Test with Indoor Positioning

255 0 1.146
=l

T 45003884
s L 0.622
£ 35} 0.424
= o361
Ay

alt = 60cm

S 2511 0.163
| § 0.099
. §-0.686
5+ Vz[m/s]
{ WY N A (O

0 10 20 30 40 50 60 70 80 90
Position in x-axis (cm)

|

l B o el o e s e o] o e s o s e o
7]
i

The airflow between two propellers with alt = 60 cm.

Airflow Analysis CFD

Maximum displacement observed
is ~0.1m

Thus, we conclude the optimal
closest distance of 0.5m to
position two drones for stable and
_quick item transfer )




Cross Marker P081t10n1ng Tracklng

vel cmd_y move right
The CMP design with the central marker (70x70 mm). \%

Position Correction (cm)

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

The EBS can detect this marker on the receiver drone
from a 3 m distance.

The remainder four markers (30x30 mm) in CMP
detected from 0.7 m distance; provide position
reference to the EBS drone with ‘cm’ accuracy of the
receiver drone’s position.

. J

, \/ / J Position correction for the Front
/’ ! position for 15 iterations.
A v

--Front-Back

yaw_rate_cmd: angle adjusti

y Marker_Size:0.03 m
_vel_cmd_x: move back

‘Marker_Size:0.03m  [LALEEE N

\ . id: 3 dis: 1.179m 100%
N vel_cmd_y: move left id: 1 dis: 1.313m 92%

Marker_Size:0.03 m i id: 2 dis: 1.153m 96%
te / mentldl id: 4 dis: 0.534m 96%

1920x1080@30fps size:0.07

il 3rker_id0

marker_idﬂarkér_id3
markef {02 i

usb_cam

Unique marker position estimate for receiver drones with ROS ‘tf’ reference for each marker.

Experimental Analysis

The CMP detection and distance accuracy is validated both

Expected
0 2 4 6 8 10 12 14 16
Number of Iteration
—Right-Back Expected
; I\ / ~N\ 27N N\ > il

indoors and outdoors.

Orientation angle correction for
Right and Left position for 20

The average position offset is ~2 em during front and
back corrections over 15 iterations.

iterations.

Number of Iterations

The average orientation offset is ~4 deg during yaw

Orientation angle (degrees)

adjustments ranging between 30 to 50 deg for 20 iterations.

_/_v/_\v/_»v — N . —

—Left-Back Expected




AeroBridge: System Implementation

b _ , - .
EBS Drone Configuration
W Depth —x . . .
- - 1‘" 3 ‘. EBS Drone mechatronic slide system is 3D
= ¥ T 7 Vg L printed and light weight.
e e [ — 3
=== EBS Drone S Sensor foicy Multi-battery case to power a fleet of drones
opon case Equipped with downward facing depth
| camera. )

The battery transfer mechanism Two-stage flight of EBS drone.

0 L Sedue . NS .
Receiver Drone Configuration LRI

The receiver drone is equipped with a similar
automated mechatronic slide system

The top surface is equipped with a custom
marker localization for accurate docking.

# 5 ‘,i T R it )2
RS OSTM R T N R R T,

\. J

Receiving drone mechanism (a) CMP design (b) Drone design for the receiver.



AeroBridge Handoff Demonstration

We present real-world validation for the handoff
during outdoor flights.

An integrated sensor feedback from GPS and Visual
Inertial approach is used to improve cm level precision for
docking.

The system allows for a smooth transfer up to +2 em
Loffset while docking J

[GPS] EBS [GPS]Receiver

AeroBridge transfer outdoor test 1

5 EBS Drone —— VIB-X | Min:0.04 Max:1.08 Mean:0.35
—snmsat | The low vibrati P
= €10 raton [Attitude] EBS
o | acrossall axes I CEEm s

: results prove the TNy S o Y N

03.15.00 03.20.00 03.25.00 i (mi 03.)30.00 03.35.00 03.40.00 . 1 4 ! i
ime (min:sec,
SyStem 1S Stable at [Attitude] Receiver

L e \/|B- in:0. 11 :0. b b
oo [ | QL5 m proximity | T —
NQ - === VIB-Z | Min:0.02 Max:1.83 Mean:0.20 . .
£ A while making the
£ I~ e N\ = e
e — transfer.

? 03.26.00 03.28.00 03.30.00 03.32.00 03.34.00 \_ )

Time (min:sec)

AeroBridge transfer outdoor test 2

Vibration across all axes for EBS and Receiver drone during transfer.



Autonomous Drone Landing & e

[ICSE 2025F “GARL: Genetic Algorithm-Augmented
Reinforcefient L'éarning to Detect Violations in Marker-Based
5 Landing Systems” ‘

ARC Linkage Grant

d $450K
O Collaboration with industry partner Skyy Network




Autonomous Drone Landing

" MACQUARIE
=" University

YYYYYY -AUSTRALIA

Ccuncillst

Council St

Road g

Last Meter Problem

O Where is a safe place to
land?

d Teach AI/ML to learn from
computer vision and
multimodal sensors

. 1 Not even Google or

Amazon have solved this

0 Guided landing with
human-placed markers

O Autonomous landing
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Human-assisted Autonomous Drone Landing

U Human lays out marker to

&lJ§ ENTERPRISE
2 SWOOPANERO tell drone where to land

w 'ﬂ

Guided Landing Issues

4 Training computer vision

morke,ooza / to recognize the right
_ TR marker
Dual Marker detection %
(False/Incorrect ID detected) . : T W .
Dual Marker detection Wrong ID Marker detecti | D False pOSItlves

(Incorrect ID detected)

(False/Incorrect ID detected)

U False negatives

O Robustness to shadows,
obstructions, glare, etc.

e > N 2 M { ‘( - 2
No Marker detection Marker detectlon desp|te moving Marker detection despite branch -
(Excessive Fog/Glare) person coverage coverage



AutoLand Software System

" MACQUARIE
Umver51ty

AAAAAAAAAAAAAAA

® Marker-based landing system has its own complexity. Below is the Multi-
Modules Marker-based landmg system (MM- MLS)

............................................

...................................

- Data... .:
TPH-YOLO
.................................. ObstacleDetechon o
U AVpose ............ D epth ............ o g Obstacle .......... Saa:
ﬂ i Estimation : : ldentification : o
Path Planning Control
Ego-Planner :> Ardupilot :> Land

..........................................................................................................................................................................................

Unsafe
due to
bugs!
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Testing Challenges & Motivations B [coume

CHALLENGES - SIMULATION VS REAL WORLD

» Real-world testing: Conduct on actual roads with a physical
autonomous vehicle

+ Authentic environment and unpredictable situations
+. Provides real sensor data and interactions
- Expensive and time-consuming

- Limited control over test conditions

BEAe - ?

[1] Feng, S., Sun, H., Yan, X., Zhu, H., Zou, Z., Shen, S., & Liu, H. X. (2023). Dense reinforcement learning for safety validation of autonomous vehicles. Nature, 615(7953),
620-627.
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Testing Challenges & Motivations MACQUARIE
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CHALLENGES - SIMULATION VS REAL WORLD

« Simulation testing: Use simulator to create virtual environments and
scenarios

+ Cost-effective and scalable
+. No safety risks to people or property
- Relies on the accuracy and fidelity of the simulation model

» Reproduce findings of simulation-tested failures in the real world
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Genetic Algorithms (GA) vs Reinforcement " MACQUARIE
Learning (RL) "

SYDNEY-AUSTRALIA

® Offline approaches like Genetic Algorithms (GA) rely on pre-defined
configurations for variables such as weather and object positions,
limiting their ability to explore the dynamic search space and potentially
missing critical corner cases [2][3].

® Online methods like RL can adjust test cases in real-time but often
struggle to converge within limited time due to the extensive learning
space in simulation testing [1] .

1 Feng, S., Sun, H., Yan, X., Zhu, H., Zou, Z., Shen, S., & Liu, H. X. (2023). Dense reinforcement learning for safety validation of autonomous vehicles. Nature, 615(7953), 620-
627.

2 Tian, H., Jiang, Y., Wu, G., Yan, J., Wei, J., Chen, W., ... & Ye, D. (2022, November). MOSAT: finding safety violations of autonomous driving systems using multi-objective
genetic algorithm. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (pp. 94-106).
3 Li, G, Li, Y., Jha, S., Tsai, T., Sullivan, M., Hari, S. K. S., ... & lyer, R. (2020, October). Av-fuzzer: Finding safety violations in autonomous driving systems. In 2020 IEEE 31st
international symposium on software reliability engineering (ISSRE) (pp. 25-36). IEEE.
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MOTIVATION

Our motivation is to develop a testing method that can
generate dynamic trajectories online while maintaining training

efficiency.
Solution insight:

® Using offline genetic algorithms (GA) to reduce the exploration
space of online reinforcement learning (RL), enabling faster
convergence of RL models.

® Creating a pre-training environment for the RL agent, allowing the
trained agent to be seamlessly transferred and applied to any
scenario.

® Exploring the complex interplay among dynamic objects and thus
generating dynamic trajectories.



GARL

HIGH-LEVEL OVERVIEW

" MACQUARIE
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Input Map

Manipulated scenario

Auto-Landing

Dynamic Landing Violation System

\4

Test Engine

GA

*‘rf k"

RL

L}

Dynamic-object control
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Autonomous Landing System Performance &

SYDNEY-AUSTRALIA

Landing violation percentage

OpenCV-MLS  TPHYolo-MLS  MM-MLS
Map Court 71.50% 30.96% 20.60%
Map Lawn 42.75% 38.25% 17.11%
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GARL vs

Baselines

" MACQUARIE
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SYDNEY-AUSTRALIA

Method Metric Court Lawn
Landing violation % 20.60% 17.11%
Top-10 42 76 . . .
GARL Parameter distance 0.19 0.19 Discovered 5 Violation Types:
3D trajectory coveragee 11.24% 11.94% -
Time Consumption (hours) 12 12 1. False positives
Landing violation % 14.25% 9.23% .
Top-10 7 113 2. False negatives
Multi-Obj GA Parameter distance 0.16 0.16 . . -
D wgjectory coverage  492%  843% 3. Static object collision
Time Consumption (hours) 11 11 H H -
Landing violation % 9.37% 8.52% 4 Dynam|C ObJeCt CO”|S|On
Top-10 205 112 I
Random Parameter distance 0.13 0.13 5 Planner fallure
3D trajectory coverage 3.51% 4.92%
Time Consumption (hours) 11 11
Landing violation % 2.25% 2.13%
Top-10 cannot find  cannot find
Offline RL Fuzzer Parameter distance 0.12 0.12
3D trajectory coverage 1.41% 351%
Time Consumption (hours) 11 11
Landing violation % 12.75% 5.94%
Top-10 104 141
Online RL Parameter distance 0.13 0.13
3D trajectory coverage 4.92% 7.03%
Time Consumption (hours) 11 11
Landing violation % 14.19% 13.53%
Top-10 67 108
Surrogate trained RL with random scenario  Parameter distance 0.13 0.13
3D trajectory coverage 8.43% 8.43%
Time Consumption (hours) 12 12
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Real world reproduction of GARL- J ncouan
identified Types | and Il violations '

AAAAAAAAAAAAAAA

'''''

—
LY

_D.toauonoﬂwmn wnrlngmek as marker

(a) False negative detection (b) False positive detection
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Real world reproduction of GARL-
Identified Types IV and V violations
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' Marker detected despite of moving '

. — obstacle - (Type IV)
Marker detected despite of moving Landing not disrupted by moving ball -
obstacle - (Type IV (== potential collision i
Landing initiated 2

Landing disruption of moving
obstacle - (Type V)
Landing halt, due to system
crash - the current trajectory’s
Landing disruption of moving obstacle - endpoint is in an obstacle.
(Type V)
Marker detected - landing initiated

.

A~

(d) Real-world experiment for Type V
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Summary: 3 Autonomous Drone Projects University

Drone Swarm LIift

O Two drones cooperate to lift and transport a payload on a self-
balanced tray

Mid-Air Battery Transfer for Drones

 Two drones cooperate to rendezvous and transfer a battery from one
drone to the other in mid air

Safe Autonomous Landing

O An RL-based algorithm was proposed to efficiently find corner cases
that cause the Auto Landing system to fail in simulation & real world
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Thank you!

CONTACT US AT MQDRONELAB.COM
OR RICHARD.HAN@MQ.EDU.AU



mailto:RICHARD.HAN@MQ.EDU.AU

SWARM LIFT CONCLUSIONS

» This research pioneered a novel push-based solution to enhance
payload deliveries using cooperative drones.

Balancing Tray (SBT), maintaining an average error rate of less than 1
degree.

» The adaptive SBT control successfully centres the payload with average
angle error for yaw, pitch, and roll are 1°, 0.625°, and 2.6°.

» The fine-grain control system ensures precise drone movement control,
minimizing vibrations and maintaining object stability at 3 m/s.

" MACQUARIE
8 University

IEEE International Conference on Advanced Robotics and Mechatronics 2024



EBS Trajectory Selection

Minimal displacement

Vertical-then-Horizontal

trajectory approach with ~0 m displacement

(

o

) 4.5m =z =
AT « 90 lterations

-- Mean displacement

R

Drone Displacement
N
()]
3

o Tl N
1.0m

iy fonrenneananeassnjansaasuesnaseans Poney . .~’.?.‘.~.‘ e e .

p.fpm .................. ey ey o —4- \/

H_V H_H \/—V ------ Teamnnnn -1_1(....4.
Flight Trajectories

Drone Displacement for different trajectories at 1.5 m (50 iterations)

Approach 4 [V- H]

We infer the best trajectory approach after 50 iterations for the EBS drone is to: descend vertically first and then align
horizontally.




AeroBridge Summary

-w
L
e

n n

« AeroBridge system one-way battery transfer in under 5 seconds.
« Maintains precise vertical distance of 0.5 meters during transfer.

« CMP model improves positioning with ~1 cm accuracy across all
directions.
 Yaw adjustment corrects deviation within 30—50°.

- Diagonal slide mechanism ensures stable mid-air alignment.

*  Future research plan will focus on

AeroBridge Phase 1 can transfer an item mid-air robustly and accurately
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Autonomous Drone Landing

Last Meter "Solutions"

O Not even Google Wing or Amazon have
solved this general autonomy landing
challenge

U Sling-based solutions lack precision,
balance, and safety
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OVERALL WORKFLOW

[ Initial Seed Generator] [ Surrogate Training ]

. . Si l:
[Statlcenwronment] imu aior/ Current State \ /Reinforcement \

: seed = = = Learning
4 & | State —’%
/ NSGA-II \ x

~

i [ Mutation ]

\ O \Acﬁam—l .

!

/ Next State \

[ Crossover ]
o v

[ Non-dominant
| sorting and selection

If termination
condition is met

el

N y

Offline

@ Before test budget is exhausted

s R
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MODELING THE SCENARIO

Nuclear Gene with

Nuclear Gene with one property Marker Composite Gene three property
Chromosome Rain Snow .. | Daytime | Marker1| Obj1 we | Obj2
\ ) \ )
! Y
Environment Composite Gene dynamic-object Composite Gene
v

Nuclear Gene with two property

Multi-objective « Distance-To-Landing (DTL)
Fitness function « Time-To-Landing (TTL)
« Diversity

current and all_others chromosome
representation of the test scenario in each
ration

k
1

\ generation size 45



GARL

OFFLINE GENETIC ALGORITHM

MACQUARIE

University

SYDNEY-AUSTRALIA

Algorithm 1 The GA chromosome-based suite of variation
operators

1: Input: Parents P,, Offspring O,, crossover threshold
threshold,., mutation threshold threshold,,, number of
mutation candidates m

: Output: Py, Oy

: Py + 2,041 « @

R, «+ P,UO;

: for i in range(0,| P;|) do

sort and select parent chromosome z; € R,

P+ P U {1'1}

: end for
9: for each pair of chromosomes (z;,z;) € P41 do

10:  generate r ~ U(0, 1)

11:  if 7 > threshold. then

® N Ve W

12: generate crossover point s ~ U(0, Lep{Z;))
v

13: T;,T; NuclearGeneCrossovgr(z;, x;, s)

14: Op41 ¢ Op1 U{z;, 25}

15 else

16: Ory1 ¢ Op1 U {zi, z;}

17:  end if

18: end for

19: for each chromosome z; € O, do
20:  for each nuclear gene y; € z; do

28 for each property y;; € y; do
22: generate © ~ U(0,1)

23: if 7 > threshold,, then

24: M+ o

25: for i in range(0,m) do

26: generate ¢ ~ Property R
27 M +— MU {c}

28 end for

29: y; ; < PropertyM utation(y;;, M)
30: Yij = Yij

31: end if

32: end for

33:  end for

34: end for

35: return Pryy, Opp1

Random Separate Point
New Chromosomes

Ny N, Ny Nl(nrl] Nip Ny Ny, Nyg " NZ(n—l) Ny,

Nin

Nfnay

Crossover: swaps genes from good fithess function
chromosomes to find new chromosomes with high
fitness functions

/
Yi; = my, k= argmax E |mg — y
keEK yeY;;

We intend to find the mutation candidate which are
most different from the existing ones

Mutation: nuclear genes mutate at a given rate
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GARL

ONLINE REINFORCEMENT LEARNING
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State

Dynamic object’s position

s nul,

bijx — Pmarker.,m; Pabj.,y - P:rnamker,ya

Marker’s position

Pua,v,:-: - Pmarker}ma Puav,y - P'.rrmrker,y)

\

UAV’s position
Action

A:={U,D,L,R,S}

Reward
portion of marker obscured by the dynamic object

RS+ ifSa=0
T, if Sy =Sy or Sg=0

T~

Collision indicator, the numerical value is 20

RL guides dynamic object dynamically
in the direction that increases the
probability of violations

Reward dynamic object if it obscures
marker or collides with UAV

RL initially trained in simplified surrogate
stage before being fully employed in GARL
for faster convergence

Even so, 12 hours for RL to converge in
surrogate environment
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GARL Summary and Future Work & [

SYDNEY-AUSTRALIA

* Novel Hybrid GA + RL algorithm for finding failures in autonomous landing
— Qutperforms baselines in simulation
— Same violations found in real world flight tests

* Future Work:
— Moving from single agent to multi-agents RL system.

— Using GARL in developing and testing learning-enabled autonomous
systems, such as autonomous vehicles and humanoid robots.

— Integrating GARL to devops pipeline of drone system, and achieve fully
autonomous testing.
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ASEAN FAW ACTION PLAN

Join us for the Next Webinar:

Next-Generation Pest Management Tools:
Drones + Sensors + Artificial Intelligence +

Natural Enemies

Professor Yong-Lak Park, West Virginia

University, USA.

The Drones for Agriculture Project in Thailand
Preesan Rakwatin, Executive Vice President,
Digital Economy Promotion Agency (depa),

Thailand

Part 3: b December at:
Time: 10:00 to 11:30 (GMT+8)

https://bit.ly/DronesIPM3

REGISTER‘ ASEAN FAW ACTION PLAN
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e
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ASEAN FAW ACTION PLAN A recording of the webinar will be made and be distributed
See www.aseanfawaction.org/drones-and-digital-ipm

Drones and Digital IPM

Join us for the Next Webinar:

Part 3: b December at;
Time: 10:00 to 11:30 (GMT+8)

*,  Supported by
Y | ,_ Australian Government

X ¢ Department of Foreign Affairs and Trade
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