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Technical issues?
• Audio

• Click “Join Audio” and check the volume
• Click the speaker icon 
       (if using a mobile phone) and make sure it is on
• Check connection to speaker 
       (if using a desktop/laptop)

• Try logging off and on
• Send a message to us in the chat box

“Join Audio”

The session will be recorded.                                                                                                
A copy will be shared 1 week after this session.



A recording of the webinar will be made and be distributed 
See www.aseanfawaction.org/drones-and-digital-ipm

1. Use the Q&A box to ask 
questions to the speakers

2. Use Chat to make a comment 
to everyone (e.g. thank a 

speaker, share a link, highlight 
an important point) 

3. Use Reactions if you want 
to share a reaction quickly – 
thumbs up, congratulations, 

etc.
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Time 

(SGT) 
Agenda Speaker

10:00 Welcome & Remarks ASEAN Action Plan – 

Dr Alison Watson

10:10 Drones for Climate-

Resilient Rice Production 

in the Mekong Delta

Dr Nguyen The Cuong | 

Mekong Delta Rice 

Research Institute 

(CLRRI), Vietnam

10:30 Q & A Session

10:45 Swarm Technology and 

Autonomous Drone 

Innovation

Dr Richard Han | 
Macquarie University, 
Australia. 

Time

(SGT) Agenda Speaker

11:05 Q & A Session

11:25 Closing ASEAN Action Plan – 

Dr Alison Watson

11:30 End



Poll

1. Who has operated a drone in 
the field for agricultural 
purposes?

2. How important will drones be 
in agricultural crop protection and 
crop health in the future?

3. Do we need more research on 
drones and agriculture?

4. Do we need more standards 
around drone use for agricultural 
practices in the field?



Poll

1. Who has operated a drone in the field for agricultural purposes?

2. How important do you think proper training is for people to fly drones for agricultural 
purposes? 

3. Should agricultural drone pilots be registered? 

4. Should pesticide application by drones be regulated? (e.g. rules around who can apply 
pesticides by drones, standards that must be applied and safety rules that have to be followed)
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The Mekong Delta – The Rice Bowl of Vietnam
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Figure 4. Agricultural land use structure in 2020 

 

Source: Ministry of Planning and Investment, 2020 

Ø Rice productivity and output 

While rice production area is decreasing, rice productivity in the Mekong Delta tends 

to increase due to increasing the rate of application of science and technology, using good 

production processes, applying standards and effective production models. In addition, the 

rice industry of the MKD has continuously applied improved crop varieties, changing from 

low-yield rice varieties resulting in the change of productivity from only 2-3 tons/ha to 6-

8 tons/ha. In 2022, rice productivity in the Mekong Delta reached 6.19 tons/ha. It is the 

highest productivity among 6 economic regions and 1.9 tons/ha higher than the national 

average. Although the cultivated area tends to decrease, the growth rate of productivity and 

output still increases in the period 2010 - 2022. 

Due to the sharp decrease in rice cultivation area, total rice output in the Mekong Delta 

also tends to decrease. However, because rice productivity is increasingly improving, rice 

output still meets domestic consumption and export needs. By 2022, rice output in the 

entire Mekong Delta region is estimated to reach 23.5 million tons, accounting for more 

than 50% of the country's total rice output. 

Rice Production in the Mekong Delta

Rice land:      1.7 million ha

Sowing area:      3.9 million ha/ year 

Triple rice/year area:       700.000 ha

Total production: 23.8 million tons 

     56% of VN rice production

   90% of total export volume

Average yield:  6.1 ton/ha 

Rice ecosystem: Diverse environments



Major Challenges in Rice Production

- Climate change impacts

- Soil and water degradation

- High GHG emission

- Pest and disease outbreaks

- Inefficient resource use

- Market volatility

- Labor shortages

- High input costs

Methane emission in Agriculture (Source: MONRE. 2020)



Drone Application in Rice Production

Benefits of Drone in Rice Production

❑ Increasing efficiency 

❑ Reducing labor dependency. 

❑ Precision application

❑ Reducing water and chemical waste.

❑ Reduce health risk for workers

Align with Climate Goals

❑ Minimizing GHG emissions

❑ Promoting sustainable practices: Precision 

agriculture, Enhancing soil health, 

Monitoring and early detection; Reduce 

health risk for workers

❑ Supporting climate-resilient practices: Data-

driven decisions, small holder inclusive

Direct Field Operations

❑ Seeding

❑ Fertilizer application

❑ Pesticide spraying

Monitoring and Analysis

❑ Crop monitoring

❑ Water management

❑ Disease detection

❑ Yield estimation

❑ Field mapping

❑ Soil analysis

❑ Assist GHG measurement



VN Drone Market & Application in the Mekong Delta Rice Production

Vietnam agricultural drones market (AgriTechDigest, 2024)

- USD 4.84 million in 2021

- USD 18.11 million by 2028

- Annual Growth Rate 21.1%

- Estimated number of agri. drones 6,000 (rice, fruit trees, banana, coffees …)

2018 2023     Now -> Future

Plant protection
Foliar fertilizing

Plant protection
Seeding
Fertilizing

- Direct application
- Crop, soil and water monitoring & analysis
- GHG monitoring & analysis
- Assist development of new varieties (phenotyping)

Trend of drone application in the Mekong Delta rice sector



Drone Application in the MD Rice Production

Land 
preparation

Crop  
establishment

Fertilization
Plant 

protection
Harvesting

Drone Application
- Golden snail

- Seeding
- Pre-emergent herbicide
- Post-emergent herbicide

- Fertilization (NPK-granule)
- Foliar fertilizers (liquid)

- Pesticides
- Fungicides

Advantages of Drones in Rice Production in the MD Context:

- Effectively address labor shortages, particularly during peak periods

- Suitability for challenge areas: muddy and water logged areas in MD, which is difficult for large machines

- Enable uniform, concentrated and synchronized sowing across large areas quickly to avoid bad weather, improve 
water management, optimize input use, enhance pest control, and ultimately improve rice quality for whole sale 
or export.

- Reduce rice yield loss by 150 - 200 kg/ha compared to conventional spraying methods, as drones eliminate the 
need for trampling rice plants while walking through the fields.



Drone for Direct Application in Rice Production in the MD

An. Hung. et al. (2024)

Early 2024 - Survey

- Seeding: 3% area ~ 117.000 ha

Estimation:

- Fertilizing:       3 x  3% area ~ 351.000 ha

- Spraying: at least 5  x 3% area ~ 585.000 ha

- Old spraying drones:              > 600.000 ha
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Treatment Seeding rate Fertilizer

T1

(DRONE)
60 kg/ha

Fertilizer rate 80 N – 40 P2O5 – 30 K2O (kg/ha): First application (7-10 DAS): 40% N + 

50% P2O5 + 50% K2O; Second application (22-25 DAS): 30% N + 50% P2O5; Third 

application (42-45 DAS): 30% N + 50% K2O 

T2

(DRONE)
60 kg/ha

Fertilizer rate 80 N – 40 P2O5 – 30 K2O (kg/ha): First application (basal application): 70% 

N + 100% P2O5 + 50% K2O; Second application (42-45 DAS): 30% N + 50% K2O 

T3

(DRONE)
80 kg/ha

Fertilizer rate 80 N – 40 P2O5 – 30 K2O (kg/ha): First application (7-10 DAS): 40% N + 

50% P2O5 + 50% K2O; Second application (22-25 DAS): 30% N + 50% P2O5; Third 

application (42-45 DAS): 30% N + 50% K2O 

T4

(Regular 

practice)

150 kg/ha

Fertilizer rate 100 N – 90 P2O5 – 50 K2O (kg/ha) (blower backpack machine): First 

application (3-4 DAS): 10% N; Second application (10-12 DAS): 35% N + 40% P2O5; Third 

application (22-25 DAS): 45% N + 60% P2O5; Fourth application (42-45 DAS): 10% N + 

100% K2O 

T5

(Cluster seeding 

machine)

60 kg/ha

Row 20cm x 

cluster 13 cm

Application of cluster seeding machines combined with deep fertilizer incorporation.

Fertilizer rate 80 N – 40 P2O5 – 30 K2O (kg/ha): First application: seeding time. 70% N + 

100%P + 50% kali; Second application: 37- 42DAS 30% N + 50% K. blower backpack 

machine. Fertilizer incorporate depth: ~5cm 

Drone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

(CLRRI - Thach Tran et al. 2024)



Drone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

Seeding by Drone

Seeding by Cluster Seeding Machine
Incorporated with fertilizer deep placement

(CLRRI - Thach Tran et al. 2024)
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T1 (Drone)

60 kg/ha

T5

 60 kg/ha

Cluster seeding

Fertilizer deep 

placement

T4 (Seed Blower)

150 kg/ha

T3 (Drone)

80 kg/ha

T2 (Drone)

60 kg/ha

Fertilizer 

deep 

placement

Drone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

(CLRRI - Thach Tran et al. 2024)



Drone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

(CLRRI - Thach Tran et al. 2024)



Drone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

T1 (Drone)

60 kg/ha

T5:  60 kg/ha

Cluster seeding

Fertilizer deep 

placement

T4 

150 kg/ha

(Seed Blower 

Machine)

T3 (Drone)

80 kg/ha

T2 (Drone): 

60 kg/ha

Fertilizer deep 

placement

(CLRRI - Thach Tran et al. 2024)



TreatmeT
No. of panicle 

/m2

No. filled 

grains/panicle

Predicted yield

(t/ha)

Actual yield 

(t/ha)

T1 371 84.6 7.53 5.64

T2 379 86.5 7.85 5.89

T3 407 81.0 7.56 5.67

T4 365 77.5 7.09 5.32

T5 420 74.1 7.46 5.59

Table. Yield components and yield across treatments

Drone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

(CLRRI - Thach Tran et al. 2024)



Categories T1 T2 T3 T4 T5

I. Total cost (VN đ/ha) 28.475.300 28.173.300 29.035.300 33.974.600 28.081.321

1. Input (VN đ/ha) 9.610.500 9.468.500 10.120.500 13.764.500 9.520.582

- Rice seed 1.080.000 1.080.000 1.440.000 1.440.000 1.080.000

+ Seeding rate (kg/ha) 60 60 80 150 60

+ Seed cost (VN đ/kg) 18.000 18.000 18.000 18.000 18.000

- Fertilizers 4.281.000 4.281.000 4.281.000 7.705.000 4.281.000

- Pesticides 4.249.500 4.107.500 4.399.500 4.619.500 4.159.582

2. Labor (VN đ/ha) 18.864.800 18.704.800 18.914.800 20.210.100 18.560.739

II. Total income 50.805.000 52.983.000 51.039.000 47.853.000 50.319.000

- Yield (kg/ha) 5.645 5.887 5.671 5.317 5.591

- Rice price (VN đ/kg) 9.000 9.000 9.000 9.000 9.000

III. Net income (VN dong) 22.329.700 24.809.700 22.003.700 13.878.400 22.237.679

VI. Investment efficiency 1.78 1.88 1.76 1.41 1.79

Drone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

Table. Cost and benefit calculation across the treatments (CLRRI - Thach Tran et al. 2024)



No Activities Unit

Drone 

capacity

(ha/day)

Price (VN dong)
Difference 

(VN dong)
Drone Labor

1 Seeding ha 50 500,000 550,000 50,000 ~ 2USD/ha

2 Pesticide spraying ha 50 150,000 270,000 120,000 ~ 4.8USD/ha 

3 Fertilizing kg 60 2,000 2,500 500 ~ 0.02USD/kg

Drone Capacity and Service Costs by Activities

Drone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

(CLRRI - Thach Tran et al. 2024)



No Activities Unit

Drone Labor

Different
Price Cost Price Cost

1 Seeding dong/ha 500.000 500.000 550.000 550.000 -50.000

2
Spraying

(7 times/season)
dong/ha 150.000 1.050.000 270.000 1.890.000 -840.000

3
Fertilizing 

(500 kg/ season)
dong/kg 2.000 1.000.000 2.500 1.250.000 -250.000

Total save by Drone (per ha):
-1.140.000 ~ 46USD

(-30.1%)

Costs of Seeding, Fertilizing, and Spraying Services

Drone for Direct Application in Rice Production in the MD: Case Study at Cuu Long Delta Rice Research Institute

(CLRRI - Thach Tran et al. 2024)



Challenges in Implementation of Drones in Rice Production

❑ Economic constraints: High costs for purchase, maintenance, and lack of financing options.

❑ Technical challenges: Complex operation and repair, limited battery life, and weather 

dependence.

❑ Regulatory barriers: Unclear policies and lack of standardization for agricultural drones.

❑ Social resistance: Hesitation to adopt new technologies and limited awareness among 

farmers.

❑ Environmental issues: Flooded fields, small fragmented farms, and disposal of drone 

components (e.g. battery).

❑ Data limitations: Lack of expertise for data analysis and poor internet connectivity in rural 

areas.

❑ Sustainability concerns: Dependence on imported technology and lack of local expertise. 



Addressing Drone Implementation Challenges in the Mekong Delta

➢ Capacity building: Train farmers and technicians in drone 

use and maintenance, especially safety.

➢ Financial support: Provide subsidies, loans, and 

cooperative cost-sharing models.

➢ Regulatory support: Develop clear policies (regulation, 

insurance etc.) and operational guidelines for drones.

➢ Localized solutions: Design drones tailored to Delta’s 

environmental conditions.

➢ Infrastructure development: Establish local repair 

centers and improve connectivity.

➢ Awareness campaigns: Educate farmers on benefits and 

ease of drone adoption.

➢ Public-Private Partnerships: Collaborate with tech 

companies and NGOs for scaling. 



THANK YOU FOR LISTENING



Projects in Autonomous Drone Systems
Professor Richard (Rick) Han

Macquarie University, School of Computing
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Macquarie University School of Computing

❑ THE (Times Higher

WorldEducation) 

University 

Rankings,

Computer Science

❑many hires, strong in AI/ML, Data Science, NLP, security, & mobile 

computing

❑ Tao Gu Mobicom chair 2022, Sydney, IEEE Fellow

❑Mobile Computing CS rankings.org #48 world/#1 Australia



www.mqdronelab.com

Introduction to MQ Drone Lab
Professors Richard Han, Endrowedness Kuantama, Subhas Mukhopadhyay (IEEE Fellow)

@ our Drone Industry Workshop

http://www.mqdronelab.com/


MQ Drone Lab Facilities
www.mqdronelab.com

DRONE INDUSTRY WORKSHOP 4

http://www.mqdronelab.com/


Macquarie Drone Lab 

Research Projects
mqdronelab.com



Collaborative Drone Swarm Lift & Transport

[IEEE ICARM 2024] “Cooperative Drone Payload Delivery 

with Self Balancing Tray’, Best Paper Award Finalist



Limitations of Lift Mechanisms

DRONE CHALLENGE:

LIMITED DRONE PAYLOAD

SMALL SPACE FOR PAYLOAD
[CENTRE OF GRAVITY & AIRFLOW]

3

4



Challenges of Drone Lift

PROBLEM - CENTRE OF GRAVITY & AIRFLOW

Some motors

experience loads

more than others.

BALANCE LIFT

3

5



Drone Swarm Lift Design

Pull-based Lift Our approach: Push-based Lift

3-DoF Gimbal

3
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Challenges:

❖ Pendulum, airflow, and wind effects

❖ Hierarchical control strategy

❖ Manipulation for payload parameter

❖ Load distribution based on trajectory planning



DRONE SWARM LIFT SYSTEM

IEEE International Conference on Advanced Robotics and Mechatronics 2024



SWARM LIFT ARCHITECTURE AND METHOD

Servo Angle

S1 0 – 30°

S2 0 – 40°

S3 0 – 30 °

BLOCK DIAGRAM LOAD SENSING PARAMETER

SBT – SERVO ANGLE



Drone Swarm Lift Demonstration
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• Patented

• Next-gen: 

autonomous 

& more

drones 

[under 

submission]



AeroBridge: Autonomous Drone Handoff System 

for Emergency Battery Services

[MobiCom 2024]

Avishkar Seth*, Alice James, Endrowednes Kuantama, 
Subhas Mukhopadhyay, Richard Han

Macquarie University Drone Lab 

Faculty of Science and Engineering 

Sydney, Australia
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1. Aerial Survey 2. Emergency Medical Delivery 3. Marine Monitoring

4. Powerline Maintenance 6. Agriculture Drones5. Bushfire Control

Critical Applications of Drones



1. https://www.tytorobotics.com/blogs/articles/a-guide-to-lithium-polymer-batteries-for-drones

Problem: Limited Battery Life for Continuous Flights

~45-60 mins average flight time
Example LiPo battery solutions

Excess weight

System Constraints

1. Heavy battery systems
2. Battery power must be conserved for 

RTL, further reducing flight time

3. Disruption of service (tracking/delivery)

Limited Battery Capacity with increasing weight

Low Battery Threshold 
Default RTL enabled

http://www.tytorobotics.com/blogs/articles/a-guide-to-lithium-polymer-batteries-for-drones
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Current Solutions

Wireless ChargingBulkier Batteries Ground-based battery 
swap

Replace the operating drone with a 
new drone

Bulky on-board replacement 
system



AeroBridge: Towards Mid-Air Battery Swap

System Advantages

1. Extend Flight time almost indefinitely
2. Drone can remain at service location, uninterrupted

3. No additional weights due to the swapping

4. We can build Emergency Battery Services (EBS)

Low 

Battery

Replacement 

Batteries

Mid-Air Refuelling

Relay - Baton Handoff

Emergency Battery Services (EBS)

Service Drone

TWO-WAY

BATTERY SWAP
Swarm Drone-2



AeroBridge: Design Goals

The battery transfer mechanism

- EBS and Receiver Drones

Design Goals

1. Accurate

2. Smooth and Quick Transfer
3. Light-Weight

4. Robust

5. Low cost



Contributions

Proximity Flight Mid-Air Docking System Visual Inertial Approach

• Use a novel visual inertial 
approach that uses a ArUco 
marker design configured 
with pose information.

• Improve the last cm 
positioning challenge of GPS.

Design a mechatronic mid-air
docking system for item transfer.

• Use Quadcopters for 
analysing Proximity Flight

• Analyse the precise position 
and distance

The drone position model based on airflow position (a) Xd = 0

cm (b) Xd = 16 cm (c) Xd = 32 cm. Battery storage cage

Contributions:0.5 m proximity transfer, mid-air docking system, visual inertial approach for improving positioning

Currently no such system exists!



Downwash Turbulence Tests

The airflow between two propellers

with Xd = 0 cm

Downwash Proximity 100%

Due to the downwash turbulence, the receiver drone below
is destabilized and can drift across the x or y axes. The
horizontal displacement is ~2.4m.

Airflow Analysis 
CFD

The CFD simulation 
outcome portrays harsh 

airflow interactions 
between two propellers 
aligned perpendicularly.

Example of airflow 
disturbance below the 
drone’s propellers



Drone Proximity Alignment – Partial Overlap

The airflow between two propellers with alt = 60 cm.

Downwash Proximity 50%

Diagonal placement, corresponding to 50 percent overlap
between the drones further reduces downwash impact.

Airflow Analysis CFD

Maximum displacement observed
is ~0.1m

Thus, we conclude the optimal
closest distance of 0.5m to
position two drones for stable and
quick item transfer



Cross Marker Positioning Tracking

Unique marker position estimate for receiver drones with ROS ‘tf’ reference for each marker.

CMP Design

The CMP design with the central marker (70x70 mm).
The EBS can detect this marker on the receiver drone
from a 3 m distance.

The remainder four markers (30x30 mm) in CMP
detected from 0.7 m distance; provide position
reference to the EBS drone with ‘cm’ accuracy of the
receiver drone’s position.

Orientation angle correction for

Right and Left position for 20

iterations.

Position correction for the Front

position for 15 iterations.

Experimental Analysis

The CMP detection and distance accuracy is validated both 
indoors and outdoors.

The average position offset is ~2 cm during front and 
back corrections over 15 iterations.

The average orientation offset is ~4 deg during yaw 
adjustments ranging between 30 to 50 deg for 20 iterations.



AeroBridge: System Implementation

The battery transfer mechanism Two-stage flight of EBS drone.

is 3D

EBS Drone Configuration

EBS Drone mechatronic slide system

printed and light weight.

Multi-battery case to power a fleet of drones

Equipped with downward facing depth 

camera.

Receiving drone mechanism (a) CMP design (b) Drone design for the receiver.

Receiver Drone Configuration

The receiver drone is equipped with a similar
automated mechatronic slide system

The top surface is equipped with a custom 
marker localization for accurate docking.



AeroBridge Handoff Demonstration

AeroBridge transfer outdoor test 2
Vibration across all axes for EBS and Receiver drone during transfer.

AeroBridge transfer outdoor test 1

The low vibration 
across all axes 
results prove the 

system is stable at
0.5 m proximity
while making the 

transfer.

We present real-world validation for the handoff
during outdoor flights.

An integrated sensor feedback from GPS and Visual
Inertial approach is used to improve cm level precision for
docking.

The system allows for a smooth transfer up to +2 cm
offset while docking



Autonomous Drone Landing

[ICSE 2025] “GARL: Genetic Algorithm-Augmented 

Reinforcement Learning to Detect Violations in Marker-Based 

Autonomous Landing Systems”

ARC Linkage Grant

❑ $450K

❑ Collaboration with industry partner Skyy Network



Autonomous Drone Landing

Last Meter Problem

❑ Where is a safe place to

land?

❑ Teach AI/ML to learn from

computer vision and

multimodal sensors

❑ Not even Google or

Amazon have solved this

with❑ Guided landing

human-placed markers

❑ Autonomous landing

53



Human-assisted Autonomous Drone Landing

❑ Human lays out marker to 

tell drone where to land

Guided Landing Issues

❑ Training computer vision 

to recognize the right 

marker

❑ False positives

❑ False negatives

❑ Robustness to shadows, 

obstructions, glare, etc.

54



AutoLand Software System

• Marker-based landing system has its own complexity.Below is the Multi-

Modules Marker-based landing system (MM-MLS)

Unsafe 

due to 

bugs!

55



Testing Challenges & Motivations

CHALLENGES – SIMULATION VS REAL WORLD

• Real-world testing: Conduct on actual roads with a physical 

autonomous vehicle

+ Authentic environment and unpredictable situations

+. Provides real sensor data and interactions

- Expensive and time-consuming

- Limited control over test conditions

[1]

[1] Feng, S., Sun, H., Yan, X., Zhu, H., Zou, Z., Shen, S., & Liu, H. X. (2023). Dense reinforcement learning for safety validation of autonomous vehicles. Nature, 615(7953),

620-627.
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Testing Challenges & Motivations

CHALLENGES – SIMULATION VS REAL WORLD

• Simulation testing: Use simulator to create virtual environments and 

scenarios

+ Cost-effective and scalable

+. No safety risks to people or property

- Relies on the accuracy and fidelity of the simulation model

• Reproduce findings of simulation-tested failures in the real world
57



Genetic Algorithms (GA) vs Reinforcement 

Learning (RL)

58

• Offline approaches likeGeneticAlgorithms (GA) rely on pre-defined 

configurations for variables such as weather and object positions, 

limiting their ability to explore thedynamic searchspaceand potentially 

missing critical corner cases [2][3].

• Online methods like RL can adjust test cases in real-timebut often 

struggle to converge within limited timedue to the extensive learning 

space in simulation testing [1] .

1 Feng, S., Sun, H., Yan, X., Zhu, H., Zou, Z., Shen, S., & Liu, H. X. (2023). Dense reinforcement learning for safety validation of autonomous vehicles. Nature, 615(7953), 620-

627.

2 Tian, H., Jiang, Y., Wu, G., Yan, J., Wei, J., Chen, W., ... & Ye, D. (2022, November). MOSAT: finding safety violations of autonomous driving systems using multi-objective

genetic algorithm. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (pp. 94-106).
3 Li, G., Li, Y., Jha, S., Tsai, T., Sullivan, M., Hari, S. K. S., ... & Iyer, R. (2020, October). Av-fuzzer: Finding safety violations in autonomous driving systems. In 2020 IEEE 31st
international symposium on software reliability engineering (ISSRE) (pp. 25-36). IEEE.



GARL = GA + RL

59

MOTIVATION

scenario.

Our motivation is to develop a testing method that can 

generate dynamic trajectories online while maintaining training 

efficiency.

Solution insight:

• Using offline genetic algorithms (GA) to reduce the exploration 

space of online reinforcement learning (RL), enabling faster 

convergence of RL models.

• Creating a pre-training environment for the RL agent, allowing the 

trained agent to be seamlessly transferred and applied to any

• Exploring the complex interplay among dynamic objects and thus 
generating dynamic trajectories.



GARL
HIGH-LEVEL OVERVIEW
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Autonomous Landing System Performance

61

Landing violation percentage



GARL vs Baselines

Discovered 5 Violation Types:

1. False positives

2. False negatives

3. Static object collision
4. Dynamic object collision
5. Planner failure

62



Real world reproduction of GARL-

identified Types I and II violations
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Real world reproduction of GARL-

identified Types IV and V violations

64
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Summary: 3 Autonomous Drone Projects

Drone Swarm Lift

❑ Two drones cooperate to lift and transport a payload on a self-

balanced tray

Mid-Air Battery Transfer for Drones

❑ Two drones cooperate to rendezvous and transfer a battery from one

drone to the other in mid air

Safe Autonomous Landing

❑ An RL-based algorithm was proposed to efficiently find corner cases

that cause the Auto Landing system to fail in simulation & real world



Thank you!
CONTACT US AT MQDRONELAB.COM 

OR RICHARD.HAN@MQ.EDU.AU
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SWARM LIFT CONCLUSIONS

IEEE International Conference on Advanced Robotics and Mechatronics 2024

➢ This research pioneered a novel push-based solution to enhance 
payload deliveries using cooperative drones.

➢ Two drones utilize adaptive control with 3-DEE servos for the Self-
Balancing Tray (SBT), maintaining an average error rate of less than 1 
degree.

➢ The adaptive SBT control successfully centres the payload with average 
angle error for yaw, pitch, and roll are 1°, 0.625°, and 2.6°.

➢ The fine-grain control system ensures precise drone movement control, 
minimizing vibrations and maintaining object stability at 3 m/s.



EBS Trajectory Selection

Drone Displacement for different trajectories at 1.5 m (50 iterations)

System Flow

We infer the best trajectory approach after 50 iterations for the EBS drone is to: descend vertically first and then align 
horizontally.

Minimal displacement 

Vertical-then-Horizontal

trajectory approach with ~0 m displacement

H

V

H H

Approach 1 [H- V]

Approach 2 [H- H]

V

H

Approach 4 [V- H]

V 

V

Approach 3 [V - V]



AeroBridge Summary

• AeroBridge system one-way battery transfer in under 5 seconds.

• Maintains precise vertical distance of 0.5 meters during transfer.

• CMP model improves positioning with ~1 cm accuracy across all

directions.
• Yaw adjustment corrects deviation within 30–50°.

• Diagonal slide mechanism ensures stable mid-air alignment.

• Future research plan will focus on improved localization and
robustness and creating a complete two-swap system.

AeroBridge Phase 1 can transfer an item mid-air robustly and accurately
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Autonomous Drone Landing

Last Meter "Solutions"

❑ Not even Google Wing or Amazon have

solved this general autonomy landing

challenge

❑ Sling-based solutions lack precision,

balance, and safety
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GARL
OVERALL WORKFLOW

[4]
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GARL

MODELING THE SCENARIO

Multi-objective 

Fitness function
• Distance-To-Landing (DTL)

• Time-To-Landing (TTL)

• Diversity current and all others chromosome 

representation of the test scenario in each 

generation

generation size



GARL

OFFLINE GENETIC ALGORITHM

We intend to find the mutation candidate which are
most different from the existing ones

73

Crossover: swaps genes from good fitness function 

chromosomes to find new chromosomes with high 

fitness functions

Mutation: nuclear genes mutate at a given rate



GARL

ONLINE REINFORCEMENT LEARNING

State
Dynamic object’s position

Action

Reward

Marker’s position

74

UAV’s position

Collision indicator, the numerical value is 20

portion of marker obscured by the dynamic object

RL guides dynamic object dynamically 

in the direction that increases the 

probability of violations

Reward dynamic object if it obscures 
marker or collides with UAV

RL initially trained in simplified surrogate 

stage before being fully employed in GARL 

for faster convergence

Even so, 12 hours for RL to converge in 

surrogate environment



• Novel Hybrid GA + RL algorithm for finding failures in autonomous landing

— Outperforms baselines in simulation

— Same violations found in real world flight tests

• Future Work:

— Moving from single agent to multi-agents RL system.

— Using GARL in developing and testing learning-enabled autonomous

systems, such as autonomous vehicles and humanoid robots.

— Integrating GARL to devops pipeline of drone system, and achieve fully

autonomous testing.
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GARL Summary and Future Work



Closing thoughts

Supported by



Join us for the Next Webinar:

Next-Generation Pest Management Tools: 
Drones + Sensors + Artificial Intelligence + 
Natural Enemies
Professor Yong-Lak Park, West Virginia 
University, USA.

The Drones for Agriculture Project in Thailand
Preesan Rakwatin, Executive Vice President, 
Digital Economy Promotion Agency (depa), 
Thailand

 

Supported by

Part 3: 5 December at:
Time: 10:00 to 11:30 (GMT+8)
https://bit.ly/DronesIPM3



Drones and Digital IPM

Supported by

Join us for the Next Webinar:
Part 3: 5 December at:
Time: 10:00 to 11:30 (GMT+8)

A recording of the webinar will be made and be distributed 

See www.aseanfawaction.org/drones-and-digital-ipm
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